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S U M M A R Y  
Using the "s-parameter groups of transformations" technique the self-similar behavior for three sets of common!y 
used plasma fluid model equations is ascertained. The self-similar variables are ~ = x/&, ~ = t/x B or ~ = t exp ( -  ex) 
where A, B and c~ are numbers and x and t are space and time variables. The resulting ordinary differential equations 
are obtained. By judicious choices of the parameters, a partial integration of the equations is obtained, thus displaying 
the analytic character of the systems. 

1. Introduction 

It is well known that self-similar (invariant) analysis of nonlinear partial differential equations 
sometimes leads to rigorous solutions for problems in fluid mechanics, diffusion "and wave 
propagation. The details of the general theory, many references and a variety of examples can 
be found in the literature (Ames [3]). They sometimes lead to useful scaling laws (Moran [12]) 
or asymptotic states (Serrin [16]; Peletier [15]) of non-similar problems. The importance of 
self-similar solutions has been exemplified in physical systems governed by parabolic and 
hyperbolic equations (Ovsjannikov [14]; Hansen [8] ; Ames [3]). The mathematical implica- 
tions of self-similarity is the existence of a transformation(s) of variables which achieves a 
reduction in the number of independent variables in a system of equations. For example a 
partial differential equation in spatial and temporal independent variables x and t may be 
transformed to an ordinary differential equation in ~ where ~ = ~ (x, t). The purpose of this work 
is to demonstrate how the form of~ and functional dependence upon ~ is found for a fluid model 
description of a plasma which includes Poisson's equation. Herein an assumed group will be 
employed, thus establishing the general, but not specific, form of 4. In a later paper we will 
address the problem of determining all permissible groups. 

A few examples of self-similarity have appeared in the plasma literature (Gurevich et al. [6]; 
Friedhoffer [5] ; Korn et al. [10] ;Allen and Andrews [2] ;Alexeffet al. [1] ;Anderson et al. [4]). 
In these works, with the notable exception of Friedhoffer, the self-similar variable has almost 
invariably been asserted to be ~ = x/t. In an earlier paper (Ikezi et al. [9]), we have shown that 
an ion acoustic wave, which could be modeled by a Korteweg-deVries equation, permits a 
self-similar variable, 

\ 3 /  ' 

where VA and 2D are the ion acoustic velocity and Debye length, respectively. 
Section 2 presents the three sets of equations which will be examined to ascertain their 

self-similar behavior. The sets of equations are : (a) multiple species fluid equations truncated 
at the third moment plus Poisson's equation; (b) massless isothermal electron fluid and cold 
nonlinear ion fluid plus Poisson's equation; and for completeness, (c) massless isothermal 
electron fluid and cold nonlinear ion fluid with a quasi-neutrality assumption. 

In Section 3, we describe the procedure for finding the self-similar variables for these three 
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sets of equations using the technique of "s-parameter groups of transformations" (Ames [3]). 
There it is shown that ~ = x / t  a or the equivalent ~ = t /x  B or ~ = t exp ( -  ~x), where A, B and c~ 
are numbers that can be adjusted to satisfy boundary or initial conditions, some physical 
constraint (Ames I-3]) or for integration of the complete system (Lonngren et al. [11]). 

Section 4 contains a discussion of some solutions of the similar equations and Section 5 
presents the summary and conclusions. 

2. E q u a t i o n s  s tud ied  

Herein we restrict attention to a fluid description of an unmagnetized plasma in an electrostatic 
ap)roximation. The first set of equations to be studied is that of a hot plasma represented by 
the multiple species fluid equations plus Poisson's equation. When the fluid equations are 
truncated at the third moment, these become 

c3nt (1.1) 
& 

3vl (1.2) 
8t 

OPt 0vt 8Pz 
c3~- + ?zP~ ~x + vt ~ = 0,  (1.3) 

3E ~ ql nz. (1.4) 
~X ~;0 

- -  + ~x (nzvl) = 0, 

Ovl 1 1 0 P  z ql 
+ Vz~x  + - E ,  

m t n t ~ x  m z 

All the symbols employed in (1) are standard and the subscript I designates the / th  species of 
charged particles in the plasma and Yz denotes a compression constant which may be different 
for the different species. This is a set of equations which has been widely used in the study of 
plasma waves, plasma shocks, etc. 

The second set of equations can be obtained from (1) by assuming the electrons to be a linear 
massless isothermal fluid and the ions to be a cold nonlinear fluid. The electrons can be described 
by the equation 

KT~ 
E -  

noe Ox ne,  

where n o is the average electron density. The cold ions can be described by the first two moment 
equations. Thus we write the closed set of equations as 

Oni ~ (nivi)= 0 (2.1) 
0 t + ~  
Ovi 0vi V] One (2.2) ~-+ V~x+ -0, no 0x 

2 ~Zne (2.3) 2D ~ = ne-- ni , 

where V,= (KT~/m~) ~ is the ion acoustic speed and 2v=(eo KTe/noe2) ~ is the electron Debye 
length. Equations (2) are widely employed in the study of ion acoustic waves. This system 
contains the simple nonlinear effects from the terms 0 (r~ ivi)/0x and v~ ~vi/Ox as well as the lowest 
order dispersive effects as represented by the term ~zD 02 ne/C3X 2. Studies of (2), in the small 
perturbation region, result in a Korteweg-deVries equation (Washimi and Taniuti [17]). 

The third set of equations, 

On 8(nv) _ 0 (3.1) 
& +  ~x ' 
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8v av V 2 On 
a t  + v ff-xx + n o a x -  0 ,  (3.2) 

is similar to the second except Poisson's equation is neglected, that is quasi-neutrality is 
assumed. This set, which is valid for long wavelength phenomena (2 >> 2D), is the set that has 
received some attention in the literature for possible self-similar behavior. We include it here 
for completeness although we note that the quasi-neutrality assumption is not valid as soon as 
the nonlinearity becomes sufficiently large to cause effects such as steepening of a wave-front 
where short wavelengths effects are bound to occur (Gurevich et al. [6], [7]). 

3. Self-similarity via one-parameter transformation groups 

There exists a simple effective procedure for ascertaining (if any exist) similarity variables for 
a set of partial differential equations. Growing from the Lie theory of groups it is known that 
these similarity variables are identical to the invariants of a particular one (or more) parameter 
group of transformations (details and references found in Ames [3]). Since this is not a standard 
method in plasma physics, we briefly outline a simplified procedure, using the linear and spiral 
groups, in this section. In a later paper the determination of possible groups leaving certain 
sets of plasma equations invariant will be presented. 

In particular a set of continuous transformations (expansions or contractions) with a positive 
real parameter, a, 

2 = a~lx , ~ = aa2t 
G: (4) 

fh a#Inl, v~= a&vz, Pl= a#~Pl, E = a#4E 

form a group (the "linear" group) under the composition operation. Here the ei's and flj's are 
to be determined so that the set of equations is "(absolutely) constant conformally invariant" 
under the group G (Ames [3]). A function Fj(xi) is said to "constant conformally invariant" 
(CCI) under G if Fj(x3 =f~(a) F~(~3, where fj  is some function of the parameter a. If fi(a) = 1 
the constant conformal invariance is called "absolute". The requirement that equation (1) be 
CCI under G is satisfied if 

fit = --292, f12 = ~*--~2,  fia = 2%--4~X2 , fi4 = ~1--~2" (5) 

The result from transforming equation (1) into the variables, ~, ~, ~,  ~, P~ and E~. For example 
(1.2) gives 

a-#2+~2 ~vl ~vl 1 OPt 1 e~ ~- + a-i#2+=~v/ ~-~ + a -0~+~ -- a -~4 - -  E (6) 
m~ ~ ~ m~ 

The condition that (6) is constant conformally invariant under the transformation group G 
means 

- - / 3 2 + %  = - 2 f l 2 + ~ I  = --fla+fii+% = - / 7 4 .  (7) 

For each of the equations in (1), an equation analogous to (7) is found. After some simple 
algebra, (5) is obtained. 

Second, we determine the invariants of the transformation group G. This is achieved by 
employing a well known theorem from group theory (Ames [3]). The invariants are obtained 
from QI--O where I is an invariant and Q is the operator 

0aXa= 1 ~ ~aa=l  ~ ~hl. ~ ~Vl ~ ~P, ~ ~E, 
O = ~xx + ~ + 3 a , = l G  + 0a ~=,~vTv~ + 8 ~ . = ,  0 7  + Oa .=, BE, 

O O O a a O 
= + + + + ?g,, + #'*e 5 2  (8) 

Solutions of QI = 0 are obtained by solving the Lagrange subsidiary equations 
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dx dt dn I dvz dP l . dE dI 
cqx - c~2t - filnt - fizVl - fi3Pt - fi4E - 0 (9) 

Equation (9) provides all of the group invariants (five in this case) which must employ the 
restrictions given in (5). Thus we obtain the invariants of the group G subject to the condition 
that (1) is constant conformally invariant under G and according to the theorem developed by 
Morgan [-13]. These invariants of the group G are also the self-similar variables for the original 
partial differential equations. For (1) these are found to be 

x 
= ~ ,  N l=nz t  2, U l = v f  - a ,  

~ l = P t t  4 -2a ,  e = E t  2-A,  (10) 

where Nt, Uz, ~,, e are only functions of ~, and A = ~ 1/~2 is an arbitrary parameter, the selection 
of which may be subject to physical restrictions and/or the boundary and the initial conditions*. 
It is a simple matter to check now that equation (10) does indeed give the self-similar variables 
for (1) by direct substitution. Thus, we obtain 

d ~ ( N U ~ ) - A ~  N - 2 N =  0 ,  (11.1) 

1 d e, 
- A ~  Uz+(A-1)UI+U~ Ul+mz~-" d ~ + - - e = 0 ' m ~  (11.2) 

d ~  d d~ (2A-4 )  ~ t - A ~  l + ~ ; t ~ - ~ U l + U  ~ ~ z = 0 ,  (11.3) 

d et 
e = Z - -  N,. (11.4) 

d~ 5 ~o 

If we try the above procedure on (2), we find that r162 = 0. Therefore the group G is not suitable 
for equation (2). However, we can select another transformation group G O (the "spiral" group) 
with a nonzero real parameter a, whose elements are 

G o : { 2 = x + i ~  n i = a & n "  (12) 
i a e t ne  = aP '  ?le , ~i = aP~ vi �9 

The requirement that (2) be constant conformally invariant under the transformation group 
Go is that 

fit = -2c~, fie = - ~ .  (13) 

The invariants of the group G o are obtained in a manner analogous to that employed for G. 
If we require QI = 0, then we obtain 

dx dt dn i _ dne _ d v  i _ d I (14) 

1 o~t f l l t l i  f i l n e  f l2Vl  0 " 

Thus the similar variables for (2) are 

r = t exp ( -  ax), N i = n, exp (2c~x), 

Ne = nr exp(2c~x), U = vl exp(ax),  (15) 

where ~ is an arbitrary parameter and N~, Nr and U are only functions of {. 
Substituting (15) into (2), we obtain the set of ordinary differential equations 

- ~ ~ - -  ~ N ~ -  - 3N~ V = 0 ,  (16.1) 

( 1  u)  dU dive 
- r d ~  - ~ d ~  - 2 N r  U 2 = 0 ,  (16.2) 

�9 The self-similar variable ~ = t / x  ~ where B = ~ 2 / ~  1 follows directly from (9) and will not be treated. 
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~2 d2N~ dNe 0 I" j  N~ I ~ -  + 5~ ~ -  + - ~ 2 /  + • N , = 0 .  

To examine the third set (3), we again use the group G, 

= a ~ l x ,  ~ = a ~ l n  , 

and find using the above procedure that 

X V n 

---- --~A, U - -  t A _  1 , N - -  t 2 ( A _ l ~  ) , 

where U and N satisfy the ordinary differential equations 

dN d(NU) 
- A ~  ~ -  + 2 ( A - 1 ) N  + d~ - 0 ,  

dU dU V~ dN 
( A - 1 ) U - A ~  ~ + U ~ + --0  

n o d~ 

(16.3) 

(17) 

(18) 

(19.1) 

(19.2) 

and A is an arbitrary parameter. With A = 1, this reduces to the set of equations studied 
previously (Gurevich et al. [6-1 ; Korn et al. [10-1 ; Allen and Andrews [2-1 ; Alexeff et al. [1] ; 
Anderson et at. [4]). 

Equations (10), (15), and (18) are a set of self-similar variables for the three sets of fluid plasma 
equations. Since equations (1)-(3) are invariant with respect to translational transformation 
in both space and time, all of the self-similar variables can be appropriately modified by 
replacing x and t by x +  x o and t +  t o where x o and t o are constants which are adjustable 
according to the problem at hand. A general rule to be borne in mind is that we would like to 
keep and create as many free parameters as possible in order to satisfy any given initial Or 
boundary conditions or to allow one to integrate the equations as discussed in the next section. 

4. Comments on self-similar equations 

Certain choices of the free parameter (A) may permit partial or complete integration of the 
self-similar equations. We consider several possibilities. 

Examining equation (11), it is clear that the choice A =2  permits (11.1) to be integrated to 
(we have dropped the subscripts and assumed a one species plasma for simplicity in illustration) 

(20.1) N - U - 2 ~ '  

whereupon (11.3) becomes the separable form 

dU d~ 
7 ~ - +  ( U - 2  0 ~ =  0. 

This integrates to 

= C 2 e- ~ ; i.e., P = c 2 e- exit= 
and 

U = c3e*+2~+2 ; i.e., v = t[c3eX/'2+2(x/t2)+2], 
whereupon 

N = cl �9 i.e., n = t-2q/(c3eX/'2+2), 
c3er ' 

and the cj are arbitrary constants. 

(20.2) 

(20.3) 
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Lastly we use (11.2) to calculate the field e and find 

_ _  ] e = -  +10~+4~2+c3(4~+1)e r  yc2 (c3er -'~ . (20.4) 
e mc  1 

Unfortunately, Poisson's equation (11.4) is not, however, identically satisfied for this choice 
of A. 

Examining now equation (19) it is seen that (19.1) is integrable immediately ifA =~ for then 
we find 

C 1 U = ~- + 24 (21.1) 

and (19.2) becomes 

2" dN 
9(2N 3 - c l )  ~ + 3 c l N Z - 2 ~ N  3 = 0. (21.2) 

Alternatively, the choice of A =�89 leads to the immediate integration of (19.2) to 

- � 8 9 1 6 2  +�89 2 -}.-I~N = c2, (22.1) 

whereupon (19.1) becomes 

(3U2 3~Uq_�89 2c1) d U  ~ -  + (2c 1 + 3 ~ U - 2 U  2) = 0. (22,2) 

In both cases at least one quadrature (but not two) appears to be necessary. 

5. Conclusions 

In this paper, we have examined the self-similar nature of three sets of fluid equations which 
have found considerable application in plasma physics. In these three cases, we found several 
free constants which could be specified by some boundary or initial condition or some other 
physical constraint. On occasion, a judicious choice may lead to a simplification or even a 
total integration of the system. There does not yet appear to be a methodical way in which to 
incorporate them at the start of a calculation. 
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